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CONJUGATE SHEAR FLOWS OF A WEAKLY STRATIFIED FLUID

A. Yu. Kazakov UDC 532.592

This paper studies the problem of pairs of horizontal shear flows of weakly stratified fluids with
identical mass, momentum, and energy fluzes. The initial problem is reduced to a system of two scalar
equations for the main- and perturbed-flow parameters by using bifurcation methods. The existence
conditions for nontrivial branches of conjugate flows close to the main flow are investigated.
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Introduction. The problem of describing pairs of shear flows with identical mass, momentum, and energy
fluxes arises in studies of two-dimensional stationary waves in a stratified fluid. Following [1], pairs of such horizontal
flows are called conjugate. In particular, the horizontal flow ahead of the front of a smooth bore type wave is
conjugate to the flow behind the front of this wave [2, 3]. The pairs of flows arising ahead of the front of an internal
solitary plateau type wave and in its middle part are also conjugate flows [4, 5].

Analytical existence conditions for conjugate flows in a continuously stratified fluid are obtained in [3, 6],
where the problem of conjugate flows was reduced to a two-dimensional system of bifurcation equations by using
the Lyapunov—Schmidt scheme. By analysis of this system, sufficient conditions for the existence of a locally
unique branch of flows conjugate to a uniform flow are derived and examples of nonuniqueness of the solutions are
constructed. Nonuniqueness was also noted in [4], where flows conjugate to a uniform flow of a stratified fluid were
investigated numerically.

In the present paper, the existence conditions for the solutions obtained in [6] are specified and generalized
using the approach proposed in that paper. In particular, a more detailed investigation of the local properties of
the solution whose existence was established in [6] leads to the necessity of formulating alternative conditions for
the existence of a nontrivial solution of the problem. In addition, in the present paper, shear main flow is studied,
allowing a generalization of existing results.

1. Formulation of the Problem. The plane stationary flow of an inhomogeneous incompressible fluid in
a layer {—0o < x < 00, 0 < y < h} enclosed between an even bottom (y = 0) and a rigid cover (y = h) is described
by the Euler equations

p(UU; + VUy) +ps =0, p(UVz + VV;/) + Py = —pg,

(1.1)
Us+V, =0, Ups+Vp, =0

with the nonpenetration boundary conditions V' =0 (y = 0,y = h). Here p is the density, (U, V) is the velocity, p is
the pressure, and g is the acceleration due to gravity. The conservation of density along the streamlines provides
the existence of a functional dependence of the density p on the stream function . In view of this, after elimination
of the pressure by using the Bernoulli integral

pIVYI? /2 + pgy + p = B(1)) (1.2)
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system (1.1) reduces to one quasilinear elliptic equation of the second order (the Dubreil-Jacotin-Long [equation [7])

P(V)AY + py (V) (V)2 /2 + gy) = By(4). (1.3)

Here B(%) is a Bernoulli function; the subscript denotes differentiation with respect to the corresponding variable.
We assume that the density profile p = py(y/h, o) and the stream function of the shear flow ¢ = y(y/h)
are known:

po(Y.0) = p.(L+opi(Y) + 0%a(Y,0)),  wo(Y) = chipn (V). (1.4)

Here p, is the characteristic density scale, ¢ is a small Boussinesq parameter related to the characteristic buoyancy
frequency Ny by the formula ¢ = Ngh/g. The dimensionless functions p; and ps specify the background density
profile and the fine stratification structure, respectively [8]. In turn, the stream function v is characterized by the
main-flow velocity ¢ at y = 0 and the dimensionless function 1. The flow given by relation (1.4) will be called the
main flow.

Next, it is assumed that, everywhere in their domain of definition, the functions p(Y) € C*[0,1], p2(Y, ) €
C*([0,1] x [0,00]) and 91 (Y) € C*[0,1] satisfy the inequalities

po >0, poy <0, p1y <0, Y1y # 0. (1.5)

The constraints imposed on the density guarantee the stability of the stratification, and the condition imposed on
the stream function guarantees the absence of return flows in the main flow (this requirement provides invertibility
of the function ). Conditions (1.5) allow one to determine the form of the functions p(y) and By () included in
Eq. (1.3). Indeed, the inversion of the dependence ¥ = ¥ (y) gives the relationship y = yo(¥)) between the stream
function and the variable y in the main flow, which allows one to determine the dependence of the density on the
stream function and [by virtue of Eq. (1.3)] the form of the function By (¢):

p(¥) = po(yo),  By(®) = p(¥)%oyy(yo) + pu (1) (¥5, (¥0)/2 + gyo)- (1.6)

Here the argument 1 of the functions yo(1)) is omitted for brevity.

The coincidence of the distributions of the fluid density and Bernoulli function along the streamlines in the
main and conjugate flows provides coincidence of the mass and energy fluxes of these flows. The equality of the
momentum fluxes leads to an additional relation that should be taken into account in studying the conjugate flows
arising in stationary wave configurations such as a solitary wave or a smooth bore [3, 4]. For plane fluid flow with
horizontal streamlines given by the stream function ¢ (y), the momentum flux Fin,p(¢) can be written as

h

Fimp(¥) = /(p(w)% +p)dy.

0

Eliminating the pressure p by virtue of (1.2), the difference of the momentum fluxes in the main and conjugate
flows can be written as
h

h
/ (p(d;)w‘?’ —gyp(¥) + B(zb))dy - / (Po(y2)¢3y — g9ypoly) + B(wo))dy =0. (1.7)

0 0
Thus, the conjugate flow is described by the system of equations containing the one-dimensional version of the
Dubreil-Jacotin-Long equation (1.3) with the function By (1) specified by formula (1.6) and the integral rela-
tion (1.7).

We transform to dimensionless variables using the quantity & as the characteristic scale for the variable y and
the function yg, the quantity ch as the scale for the stream functions ¢ and g, the quantity p. as the density scale,
and p,.c? as the scale for the Bernoulli function B. Using the previous notation for all dimensionless quantities, we
obtain the nonlinear ordinary differential equation

P() (Wyy — Yoyy(¥0)) + py (V) (V5 — 5, (¥0)) /2 + Ao~y — yo)) =0 (1.8)

on the interval y € (0, 1) with the boundary conditions ¥(0) = 0, ¥(1) = @ [@Q = 1o(1) is the fluid flux in the main
flow] and the additional integral condition
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1 1

/ (p(u;)wg = A0 typ(y) + B(w)dy - / (pO(yQ)wgy — o ypoly) + B(wo))dy =0, (1.9)

0 0

where A = ogh/c? is the densimetric (density) Froude number.

Equations (1.8) and (1.9) contain nonlinearity of general form given by the functions p(v) and yo(v). To
simplify the further consideration, we transform to the semi-Lagrangian variables [¢) and y(v)], thus obtaining
equations with fractional rational nonlinearity. This is possible by virtue of the postulated absence of return flows.
In this case, the transformed equations will be considered on the interval ¢ € [0,Q]. In view of the relations
by = 1/yy and vy = —yyy/y;, Eq. (1.8) becomes

You — Vi i
( g:iy(ghf )TZ’ + Ay — yO)de =0,
where () = o7 1p(1); the argument v of the functions p(¢)) and j(v)) is omitted for brevity. To transform the
momentum flux integral (1.9), we perform the change of variables y = y() in the first term and y = yo(¢) in the
second. As a result, the integral relation becomes
Q

J (%50~ M = vowon)-+ Bw) o — o)) =0, (1.10)
4 YpYoy

The solution of the formulated problem is sought in the vicinity of the main flow given by the eigenfunction yo(3)):

y(¥) = yo(¥) + w(¥).

As a result, we have the following system of equations for the perturbation w(t):

2 3
. def [ PWy . 3yoypwy, + 2wy, ,
Flws o) = _( You )w APy (p 2y5, (You + w¢)2)w =0 (L11)
w(0) = w(Q) = 0; (1.12)
i pwy, A
+ " ppw?)dip = 0. 1.13
0/ (2y§¢(yo¢ +wy) 2" ) 49

The integral relation (1.10) in the final form (1.13) is obtained by integration by parts in the term containing B(1)),
taking into account boundary conditions (1.12) and using expression (1.6) for the derivative By, (¢) of the Bernoulli
function.

2. Bifurcation Problem. It is easy to see that the solution w(v)) = 0 satisfies system (1.11)—(1.13) for any
A and o. Thus, the problem of conjugate flows can be treated as the problem of bifurcation of the trivial solution
of Egs. (1.11) and (1.12) with the additional integral relation (1.13). Using the Lyapunov-Schmidt scheme (see,
for example, [9]), which allows the description of the behavior of solutions in the vicinity of bifurcation points, we
determine the following functional spaces:

E = {v € C?[0,Q]: v(0) = v(Q) = 0}, F = C[0,Q].

The nonlinear differential operator of Eq. (1.11) will be considered as a map F(w(¢);\,0): ExR xRy — F. We
seek conjugate flows close to the main flow. Then, the condition of smallness of the perturbation w allows the use
of some properties of the linear part of the operator of problem (1.11):

def

LA, 0){w) = =(pwy /ydy)y + Apyw.
We recall that the initial problem contains a natural small parameter of weak stratification o > 0. Therefore, we
consider the bifurcation points for the limiting equation (1.11) for o = 0. For this equation, such points can be only
the eigenvalues )\, of the Sturm-Liouville problem
—(pu/Yap)w + Ao =0, 9(0) = (@) =0, (2.1)
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where the function p; = p1(yo(¥)) is defined in (1.4). If conditions (1.5) are satisfied, this problem has a countable
family of single real eigenvalues {\,: n € N} (numbered in increasing order) and the family of their corresponding
eigenfunctions {¢,: n € N} [7].

Let us fix the minimum eigenvalue Ay and its corresponding eigenfunction ¢g(¢)) € E normalized in Ls [0, Q).
The space E is represented as the direct sum of subspaces E = ker P & im P with the projector P: E — E given by
the formula

Q
P(v) = o / o()u(w) dip. (2.2)

0
In view of the self-conjugation of the operator L(\g,0) it can be concluded that the nonuniform problem
L()‘070)<w>:f7 fEF

has a unique solvability condition of the form H(f) = 0 with the projector H onto the defect subspace given by the
same formula (2.2). Similarly, the space F is represented as F = ker H @ im H. We note that the eigenfunctions ,,
form a basis in Lo[0, Q] which is orthogonal to the scalar product with weight pqy.

Equation (1.11) is written as

L(Xo,0){(w) = R(w; \, o), (2.3)

where R(w; A, 0) = L(X\o,0){w) — F(w, \,0). The operator R(w; A, o) is small but not lower than the second order
for the set of variables w, A — Ao, and o. Indeed, the main-order term of the expression for R(w; A, o) contains only
products of the form owy.y, owy, (A= Xo)w, wy,, and wyywy,, as follows from the form of the left side of (1.11) and
the representation of L(\,0){-) for A = Ao and o = 0.

Following the standard Lyapunov—Schmidt scheme, we seek the solution of the problem in the form

w = by + u, (2.4)

where b € R is the amplitude parameter and the function u € ker P satisfies the condition P{u) = 0. In view of the
expansion of the space F generated by the projector H, Eq. (2.3) can be written in projections onto the subspaces
ker H and im H:

L(Xo,0)(u) = (I = H)(R(bpo + u; A, 0)); (2.5)

0= H(R(bpo + u; A\, 0)). (2.6)

Statement 1. There exists a smooth map u(\,o,b) : R® — ker P which is defined in some vicinity of the
point (Xo,0,0) and transform Eq. (2.5) to identity, with the equality u(\,0,0) = 0 being satisfied for all X and o
from the domain of definition. In addition, u(Xo,0,b) = O(bQ)‘b

The existence of the indicated map follows directly from?%e theorem of implicit maps applied to Eq. (2.5)
because the operator L considered as a map L(\g,0)(-) : ker P — ker H is a continuous invertible operator. The
above estimates of the order of smallness of the function u are obtained as a consequence of the boundedness of the
operator L~! in view of the boundedness of the projector H and the order of smallness of the residue R(bpg+u; \, o).

Because of the smoothness of the map u(\, o,b) and its properties indicated in Statement 1, a smooth map
4 exists such that

u(A, 0,b) = bu(A, 0,b). (2.7)
With the function @ introduced in such a manner, Eq. (2.6) written in the form
H(R(bpo + bu(X,0,b);\,0)) =0 (2.8)

is an implicitly specified scalar bifurcation equation for the three parameters A, o, and b. This equation describes
the behavior of all branches of the solution of Egs. (1.11) and (1.12) in the vicinity of the bifurcation point: any
small solution of Eq. (2.8) of the form A(c,b) can be put in correspondence to the small solution of Eqgs. (1.11) and
(1.12) w = by + u(A(o,b), 0,b).

3. Analysis of the Scalar System of Equations. For the description of the small conjugate flows, it
remains to take into account the condition of coincidence of the horizontal momentum fluxes (1.13). Taking into
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account the form of solution (2.4) and the smallness property of the functions u in (2.7) and substituting (2.4) into
(1.11) and (1.13), we obtain the following real system of equations describing conjugate flows close to the main flow:

bf(Aa,b) =0, BN 0,b) =0. (3.1)
Here
Q
P(<P0¢+u¢,) . - 3byoy (o + Tiy)? + 262 (0o + Ty )

hab) = +Apy (o +10) + ¢ dy; (3.2

i + iy )? A

oy + Uy . 2

I(\ 0,0) / + +u)* ) di. 3.3
J 2y0¢, Yoy + bpoy + biy) 2 pu(po+1) ) v (3.3)

Because we seek nontrivial conjugate flows (i.e., w # 0), by setting b # 0 we transform from system (3.1) to
the system

f(A o,b) =0, I(A\,0,b) =0, (3.4)

which corresponds to the separation of the trivial branch of the solution. A pair of smooth functions [b(c) and A(0)]

for which both equations of system (3.4) become identity in some vicinity of zero and b(0) = 0 and A(0) = ¢ will

be called a small solution of system (3.4). Below, we study conditions at which system (3.4) admits small solutions.
Statement 2. System (3.4) has a small solution of the form

b=0, A=A\o) (3.5)
with some smooth function \(o).
Proof. In the first equation in (3.4), we set b = 0. Then, in view of relations (3.2) and (3.3), we obtain
Q
£Ova.0) = [ eolh o) + ) do. (36)
0

Performing integration by parts in expression (3.3) for [, for b = 0 we obtain

100:0) = 5 [t [ = (") gt + m]as
0

Q Q
1
=, [ woLo)en+ wdv + ) [GL0) o0 + v,
0 0

Let us show that the last term on the right side is equal to zero for any A and 0. Relation (2.5) written in the
equivalent form

(I — H)(F(bpo + bu(A, o,b);\,0)) =0
is identity in some vicinity of the point (\g,0,0). Differentiation of this identity with respect to the variable b at
the point b = 0 yields
0
0b
The last equality implies that L(\, 0)(po + @) € ker (I — H), i.e., L(\, 0){po + @) = cp(1)), where ¢ depends only
on the parameters A and o. Because @ € ker H, we have

[(1 — H)(F(bpo + bia(), o, b); A, a)>} ’ = (I — H)(L(\ o) (g0 +@)) = 0.

Q Q
/ﬂL(x\, a){po +0) dip = c(\, 0) /&gpg dip = 0.
0 0

Hence, for any values of the parameters A and ¢ in some vicinity of the point (Ag,0), the following relation holds:
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I\, 0,0) = f(), 0,0)/2. (3.7)

Because Egs. (3.4) are linearly dependent for b = 0, to complete the proof it suffices to show that there exists a
smooth function A(o) for which the equation f(A,o,0) = 0 becomes identity. For this, we use the implicit-function
theorem. By virtue of relation (3.6), we have f(Xo,0,0) = 0; therefore, it only remains to verify that the derivative
fr(Xo,0,0) does not vanish. Taking into account that the eigenfunction ¢y is orthogonal to the image of the operator
L(Mo,0) and using the equality @(Ag,0,0) = 0 for b = 0, from (3.2) we obtain

Q Q
£500,0,0) = [ oo = (13%) + Naproia + pro(on + )] a0 = [ o0 (L00,0)@0) + prusn) di = x
0 You 7 0
where Q
def 2
X= [ prppody #0 (3.8)
0

by virtue of the stratification stability condition (1.5).

Thus, system (3.4) admits a trivial solution for b(c) = 0 even after the separation of the trivial branch
in (3.1). The following statement represents the conditions under which system (3.4) possesses a unique small
solution.

Statement 3. If the condition

4 3

def 2

! / 211} dy #0 (3-9)
5 y()d;

is satisfied, there exists a unique pair of smooth functions A(c) and b(c) that specify the small solution of system (3.4).

Proof. To prove this statement, we again use the implicit-function theorem. As noted in the proof of
Statement 2, the point (Ao, 0, 0) satisfies both equations of system (3.4). Thus, the local solvability of this system
of equations is characterized by the determinant of the matrix

. < £5(X0,0,0)  f1(Xo,0,0) )
16(X0,0,0)  1x(X0,0,0) )~

The derivative fx(\g,0,0) was already calculated in the proof of Statement 2, and the derivative Ix(\g,0,0) is
expressed from relation (3.7):

f)\(A07070) =X, l)\()\07070) :X/2

The derivatives of the functions with respect to the parameter b can be obtained directly: By virtue of relations
(3.2), taking into account that @(Ao,0,0) = 0, and performing integration by parts in the second term, we have

Q Q

Fo(%0,0.0) = /@o [L(/\O,O)<€Lb> N d <3byow(wow + )% + 2b%(oy +ﬂw)3)w}d1/) _ _3/

9031/; dip
b 2y§w (Yo + bpoy + biiy)? 2 ] 4 '

0 Yoy

Similarly, for the derivative of the functions I(X, o, b) with respect to the variable b, from (3.3) we obtain

Q Q Q

~ 3 3
U - 2 N ¥ 1
b%0.0,0) = [ (¥4 4 doprasputin — 1 Yo = [ (k0. 0)@n) — o Yo ==, [
0 0

3
Poyp
- .
Yoy 290, 296, 2J 5

Yoy
From this, the determinant of the matrix M is expressed as

det M = —py /4

[x and p are given by formulas (3.8) and (3.9), respectively]. As noted above, x # 0; therefore, condition (3.9)
provides the existence of the unique small solution of system (3.4).

Thus, if a trivial branch of solutions (3.5) necessarily exists, Statement 3 establishes the uniqueness of this
branch in the case where the determinant of the matrix M is different from zero. Statements 1-3 lead to the
following statement.
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Statement 4. The condition
Q

@(Bnp
/ 4 dp=0 (3.10)
0 Yoy

is mecessary for the existence of branches of conjugate flows different from the main flow.

For the case of a uniform main flow, a statement equivalent to Statement 3 is proved in [6]. However, in that
paper, the properties of the solution branch distinguished by condition (3.9) were not analyzed since the primary
goal was to study the nonuniqueness of the solution. Thus, Statement 4 significantly supplements the interpretation
of the existence conditions for small conjugate flows obtained in [6].

We also note that, in the case of uniform main flow, condition (3.10) can be obtained by using the form of
the momentum flux integral employed in the numerical solution of the conjugate flow problem in [4].

4. Equivalent Formulation of the Problem in Eulerian Variables. The above line of reasoning can
be used to solve the problem in the initial variables [¢)(y) and y|. In this case, condition (3.10) is written in the
more complex form

1
0/ [wi;)%ﬂ Cpmyore), * ¢iy (wiﬁzy ) J&av=0 (4.1)

Here & is the eigenfunction of the Sturm-Liouville problem which is generated for ¢ = 0 by the linear part of the
operator of problem (1.8):

= (A 0+ S )e=0. g0) = e =0, (42)

Conditions (3.10) and (4.1) are equivalent if they are considered as constraints imposed on the parameters of the
main flow (1.4). The proof of the equivalence is based on the relation between the eigenfunctions of the Sturm—
Liouville problem (2.1) and (4.2):

eo(¥) = —&o(yo (1)) you (¥).

In fact, this relation implies that the eigenfunction ¢q is the image of the eigenfunction £y obtained by the action
of the linear par of the transformation of variables [¢(y),y) — (y(¢),%]. In this case, the eigenvalues coincide.

Condition (4.1) is more constructive in the sense that it allows one to obtain velocity and density profiles
for which this condition is obviously satisfied. In particular, solving the system of differential equations

Yoyyy = C1%oy,  pry = Ca(y)*?  (Ch 2 = const)

and choosing the remaining integration constants so that the average density gradient has order o, as the dimen-
sionless parameters of the main flow for C7 = 0, we obtain
2 5/2
VY (1+7y)>= -1 2
, =1- @)

92 pO(y) (1_’_7)5/2_1 o+ (0 )
(v = const > 0). These profiles correspond to a linear velocity shear and the density distribution corresponding to
it in the sense of condition (4.1).

Linear velocity shear is a simple example of shear flow and is therefore of special interest. Another example

Yo(y) =y +

of main flow with a linear shear is also considered for a nearly linear density profile, i.e., for p1(y) = —y. In this
case, the eigenvalues and eigenfunctions of problem (4.2) [or (2.1)] can be found in implicit form [10]:
yroo\2 P . (min(1l+y)
Ao = ( ) + ' = /1 +~y sin ( )
0= \In(1 4 ) 4 o=Vt In(1 + )

Then, condition (4.1) becomes

(14 e ™) 0 o
=0, o= .
(1+9a2)(1 + a?) 3ln(1+47)
It is easy to show that this condition is satisfied only in the limit as v — 0, which corresponds to the absence of a
velocity shear. The case of uniform main flow is analyzed in [3]. In particular, the existence of a small nontrivial
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branch of conjugate flows is found for the case of linear stratification, which is in satisfactory agreement with the
results of the present study.

Conclusions. In the present work, two equivalent forms are obtained for the condition which is necessary
for the existence of small smooth branches of flows conjugate to a given shear flow. These conditions a priori
distinguish classes of main-flow density and velocity profiles from which wave configurations in the form of plateau
or smooth-bore type solitary wave can branch off.

This work was supported by the Program for Support of Leading Scientific Schools of the Russian Federation
(Grant No. NSh-5245.2006.1) and grant of the INTAS and Siberian Division of the Russian Academy of Sciences
(Grant No. 06-1000013-9236).
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